Lagrangian relaxation for natural language decoding

نویسنده

  • Alexander M. Rush
چکیده

The major success story of natural language processing over the last decade has been the development of high-accuracy statistical methods for a wide-range of language applications. The availability of large textual data sets has made it possible to employ increasingly sophisticated statistical models to improve performance on language tasks. However, oftentimes these more complex models come at the cost of expanding the search-space of the underlying decoding problem. In this dissertation, we focus on the question of how to handle this challenge. In particular, we study the question of decoding in large-scale, statistical natural language systems. We aim to develop a formal understanding of the decoding problems behind these tasks and present algorithms that extend beyond common heuristic approaches to yield optimality guarantees. The main tool we utilize, Lagrangian relaxation, is a classical idea from the field of combinatorial optimization. We begin the dissertation by giving a general background introduction to the method and describe common models in natural language processing. The body of the dissertation consists of six chapters. The first three chapters discuss relaxation methods for core natural language tasks : (1) examines the classical problem of parsing and part-of-speech tagging; (2) addresses the problem of language model composition in syntactic machine translation; (3) develops efficient algorithms for non-projective dependency parsing. The second set of chapters discuss methods that utilize relaxation in combination with other combinatorial techniques: (1) develops an exact beam-search algorithm for machine translation; (2) uses a parsing relaxation in a coarse-to-fine cascade. At the core of each chapter is a relaxation of a difficult combinatorial problem and the implementation of this algorithm in a large-scale system. Thesis Supervisor: Michael Collins Title: Visiting Associate Professor, MIT Vikram S. Pandit Professor of Computer Science, Columbia University

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian Relaxation for Inference in Natural Language Processing

There has been a long history in combinatorial optimization of methods that exploit structure in complex problems, using methods such as dual decomposition or Lagrangian relaxation. These methods leverage the observation that complex inference problems can often be decomposed into efficiently solvable sub-problems. Thus far, however, these methods are not widely used in NLP. In this talk I will...

متن کامل

On Dual Decomposition and Linear Programming Relaxations for Natural Language Processing

This paper introduces dual decomposition as a framework for deriving inference algorithms for NLP problems. The approach relies on standard dynamic-programming algorithms as oracle solvers for sub-problems, together with a simple method for forcing agreement between the different oracles. The approach provably solves a linear programming (LP) relaxation of the global inference problem. It leads...

متن کامل

Exact Decoding of Syntactic Translation Models through Lagrangian Relaxation

We describe an exact decoding algorithm for syntax-based statistical translation. The approach uses Lagrangian relaxation to decompose the decoding problem into tractable subproblems, thereby avoiding exhaustive dynamic programming. The method recovers exact solutions, with certificates of optimality, on over 97% of test examples; it has comparable speed to state-of-the-art decoders.

متن کامل

Exact Decoding of Syntactic Translation Models through Lagrangian Relaxation

We describe an exact decoding algorithm for syntax-based statistical translation. The approach uses Lagrangian relaxation to decompose the decoding problem into tractable subproblems, thereby avoiding exhaustive dynamic programming. The method recovers exact solutions, with certificates of optimality, on over 97% of test examples; it has comparable speed to state-of-the-art decoders.

متن کامل

A Tutorial on Dual Decomposition and Lagrangian Relaxation for Inference in Natural Language Processing

Dual decomposition, and more generally Lagrangian relaxation, is a classical method for combinatorial optimization; it has recently been applied to several inference problems in natural language processing (NLP). This tutorial gives an overview of the technique. We describe example algorithms, describe formal guarantees for the method, and describe practical issues in implementing the algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014